Phoenix
Phœnix Mars Lander est une mission du programme Scout et s'inscrit dans la stratégie de la NASA qui vise à faire de l'eau l'élément central de l'exploration robotique de Mars.
Catégories :
Exploration de Mars - Sonde spatiale - National Aeronautics and Space Administration - Exploration de l'espace en 2008
Recherche sur Google Images :
Source image : leseigneurdesmondes.centerblog.net Cette image est un résultat de recherche de Google Image. Elle est peut-être réduite par rapport à l'originale et/ou protégée par des droits d'auteur. |
Page(s) en rapport avec ce sujet :
- 3 messages - Dernier message : 5 juin 2008 Pour rentrer dans l'atmosphère de Mars, Phœnix a utilisé un... Phœnix est aussi pourvue d'une caméra, déploiera un bras articulé de 2, 25... (source : forum.planete-astronomie)
Phœnix | |
Caractéristiques | |
Organisation | NASA |
Domaine | Observation de Mars |
Masse | 400 - 500 kg |
Lancement | 4 août 2007 à 09 :26 :34 UTC |
Lanceur | Delta II |
Fin de mission | 2 novembre 2008 |
Durée | |
Durée de vie | {{{durée de vie}}} |
Désorbitage | {{{désorbitage}}} |
Autres noms | {{{autres_noms}}} |
Programme | Programme Mars Scout |
Index NSSDC | 2007-034A |
Site | http ://phœnix. lpl. arizona. edu/ |
Orbite | |
Périapside | {{{périapside}}} |
Périgée | {{{périgée}}} |
Apoapside | {{{apoapside}}} |
Apogée | {{{apogée}}} |
Altitude | {{{altitude}}} |
Localisation | {{{localisation}}} |
Période | {{{période}}} |
Inclinaison | {{{inclinaison}}} |
Excentricité | {{{excentricité}}} |
Demi-grand axe | {{{demi-grand axe}}} |
Orbites | {{{orbites}}} |
Type | {{{télescope_type}}} |
Diamètre | {{{télescope_diamètre}}} |
Superficie | {{{télescope_superficie}}} |
Focale | {{{télescope_focale}}} |
Champ | {{{télescope_champ}}} |
Longueur d'onde | {{{télescope_longueur_d'onde}}} |
Instruments | |
Robotic Arm | bras robotisé |
Robotic Arm Camera | Caméra du bras robotisé |
Surface Stereo Imager | imageur stéréo |
Thermal and Evolved Gas Analyzer | analyseur de gaz |
Mars Descent Imager | caméra de descente |
Microscopy, Electrochemistry, and Conductivity Analyzer | analyseur microscopique et électrochimique |
Meteorological Station | station météorologique |
{{{instrument8_nom}}} | {{{instrument8_type}}} |
{{{instrument9_nom}}} | {{{instrument9_type}}} |
{{{instrument10_nom}}} | {{{instrument10_type}}} |
{{{instrument11_nom}}} | {{{instrument11_type}}} |
{{{instrument12_nom}}} | {{{instrument12_type}}} |
Phœnix Mars Lander est une mission du programme Scout et s'inscrit dans la stratégie de la NASA qui vise à faire de l'eau l'élément central de l'exploration robotique de Mars (following water). Cette mission se différencie et complète celle des deux astromobiles MER qui sont toujours en activité sur Mars. Spirit et Opportunity étudient aussi le passé aquatique de Mars mais en explorant les roches, les cratères, les monticules de matières rocheuses et autres petites collines autour de leur site d'atterrissage.
Phœnix est un atterrisseur (lander) qui s'est posé sur Mars, le 25 mai 2008, à proximité de la calotte polaire Nord, dans la région de Vastitas Borealis où de vastes stocks de glace ont été détectés juste au-dessous de la surface (68° de latitude nord et 233° de longitude est ). C'est une plaine, apparemment dépourvue de blocs rocheux (ce que souhaite la NASA pour un atterrissage sans problème) et dont la température avoisine les –100 °C.
Phœnix reprend les composantes déjà réalisées de la sonde Mars Surveyor dont le programme avait été annulé en 2001 suite à l'échec de la mission Mars Polar Lander, d'où son nom qui fait référence au Phénix, l'oiseau fabuleux qui pouvait renaître de ses cendres. La durée de la mission était estimée à 3 mois au sol.
Phœnix a surtout permis de confirmer le 31 juillet 2008 la présence d'eau gelée sur le sol martien du pôle nord grâce à l'analyse d'un échantillon prélevé par le bras robotique de la sonde relevant des vapeurs dégagées par la chaleur[1].
La dernière communication établie entre la Terre et la sonde Phœnix date du 2 novembre 2008. Elle est depuis reconnue officiellement comme perdue, quoiqu'un «mode Lazare», servant à rebooter l'électronique de la sonde au terme de l'hiver martien, ait été prévu[2][3]. Sa mission aura au final duré plus de cinq mois.
Objectifs scientifiques
Très classiquement, et dans la droite ligne des priorités de l'agence spatiale américaine pour l'exploration de Mars, Phœnix va chercher de l'eau ou plus précisément selon un communiqué officiel «enquêter sur l'histoire de l'eau liquide qui a pu exister dans l'arctique martien aussi récemment qu'il y a uniquement 100 000 ans».
On revient ainsi vers le thème d'une vie microbienne sur Mars, piste plutôt mise de côté après la déception des sondes
Cependant, la découverte — hypothétique pour le moment — de tels organismes ne formait pas le premier objectif de la mission Phœnix. L'atterrisseur étudia aussi et en particulier la météo des pôles et a pu photographier le paysage qui l'entourait en relief grâce à une caméra stéréo.
Autre aspect de la mission, la météorologie de la planète. Phœnix étudia l'atmosphère martienne jusqu'à 20 km d'altitude pour mettre à jour nos connaissances des processus atmosphériques. Les scientifiques ont pu observer un aspect remarquable du climat martien lorsque à chaque printemps, une masse importante de glace polaire se sublime et forme des nuages de glace. L'atterrisseur a apporté des données sur la formation, la durée et le mouvement des nuages, du brouillard et autres tempêtes de poussières.
Phoénix fut au cœur de plusieurs enjeux importants : première réalisation concrète d'un programme de type Scout, premier atterrissage proche du pôle Nord martien, retour des expériences d'exobiologie martienne à la NASA et de nouveau l'utilisation de rétrofusées pour se poser sur la Planète rouge. En bref, une mission de 420 millions de dollars (soit 304 millions d'euros[4]) riche en ambitions et espoirs.
Histoire
Le programme est dirigé par l'Université d'Arizona sous la tutelle de la NASA et le lancement de la sonde a lieu le le 4 août 2007 [5] par une fusée Delta II depuis la Cape Canaveral Air Force Station, la fenêtre de tir s'étendait sur 22 jours — pour une arrivée en mai 2008.
Le 10 avril 2008, la trajectoire de la sonde est corrigée en vue d'un atterrissage sur le site de Green Valley [6].
Séjour sur Mars
La sonde Phœnix se pose de façon nominale sur le sol martien le 25 mai 2008 à 23 h 38 UTC. Le signal radio confirmant la réussite de son atterrissage est reçu sur Terre à 23 h 53 UTC, après un délai de transmission de 15 minutes[7].
Les sondes spatiales Mars Odyssey, Mars Reconnaissance Orbiter et Mars Express ont modifié leurs trajectoires afin d'être au-dessus de Phœnix au moment de son atterrissage. En cas d'échec de la mission, la présence de ces trois orbiteurs aurait permis à la NASA de récupérer suffisamment de données pour comprendre ce qui s'était passé [8].
Premiers résultats
Différentes prises de vues réalisées par Phœnix ont montré la disparition d'une matière blanche contenue dans une tranchée creusée par le bras robotisé de la sonde. La NASA a affirmé que cette matière est de la glace d'eau qui s'est sublimée suite à son exposition au soleil[9].
Le 31 juillet 2008 la présence d'eau gelée sur le sol martien du pôle nord est confirmée, grâce à l'analyse d'un échantillon prélevé par le bras robotique de Phœnix, relevant des vapeurs dégagées par la chaleur. L'existence de cette glace d'eau était déjà connue grâce aux observations de Mars Odyssey et de Phœnix réalisées en juin 2008[1].
Caractéristiques et instruments scientifiques
Cet atterrisseur est construit autour de la plate-forme originellement prévue pour l'atterrisseur Mars Surveyor de 2001. Une fois ses panneaux solaires déployés, quinze minutes après l'atterrissage, il mesure à peu près 5, 5 mètres de longueur sur 1, 5 mètre de diamètre.
Cette mission a été abandonnée en 2000 après l'échec de Mars Polar Lander, écrasée sur Mars en 1999. Il embarque une suite d'instruments, hérités des missions Mars Polar Lander et Mars Surveyor 2001 et développés particulièrement pour la mission.
Phœnix utilise la suite d'instruments les plus avancés jamais posés sur Mars d'une masse totale de 55 kilogrammes. Pour analyser les échantillons ramassés, Phœnix utilise un petit four et divers instruments d'analyse dont un spectromètre de masse. Les échantillons sont tout simplement chauffés de manière à mieux déterminer leur composition et leurs caractéristiques.
Bras robotisé (R. A. )
Le bras robotisé (en anglais Robotic Arm) [10]. Instrument réalisé par le Jet Propulsion Laboratory.
Ce bras particulièrement très élaboré était équipé d'une petite pelle fixée à son extrémité qui s'est révélée capable de creuser une tranchée de 25 centimètres de profondeur à peu près et de collecter des échantillons pour d'autres instruments. D'une longueur de 2, 35 mètres[11], ce bras offrait quatre degrés de liberté, et pouvait exercer une force de 80 newtons.
Caméra du bras robotisé (R. A. C. )
La caméra du bras robotisé (en anglais Robotic Arm Camera) [12]. Instrument réalisé par l'Université d'Arizona et l'Institut Max Planck.
La caméra du bras robotique était montée à son extrémité. Une grande variété de petites LED de couleurs permettaient de prendre des images avec un éclairage rouge, bleu ou vert. La lentille était protégée de la poussière par un cache transparent amovible. Cette caméra a réalisé des images des échantillons collectées par la pelle à partir du sol. Elle n'a finalement pas réalisé d'image des parois des tranchées creusées par le bras, ni pu être déplacée à proximité de roches voisines pour examiner leur texture.
Imageur stéréo (S. S. I. )
L'imageur stéréo (en anglais Surface Stereo Imager) [13]. Instrument réalisé par l'Université de l'Arizona.
L'instrument SSI a constitué les yeux de l'atterrisseur. Héritée des sondes Mars Pathfinder et Mars Polar Lander, mais perfectionnée grâce à des capteurs haute résolution identiques à ceux des astromobiles américains Spirit et Opportunity, la caméra SSI a pu prendre des images stéréoscopiques en couleurs du site d'atterrissage, quasiment à hauteur d'homme (2 mètres au-dessus de la surface martienne).
Des roues à filtres ont permis à la caméra d'observer dans 12 longueurs d'ondes différentes (du violet au proche infrarouge) le sol, le ciel et le soleil. Les panoramas réalisés ont permis de caractériser la géologie du site d'atterrissage, d'identifier les minéraux des roches et du sol, et de réaliser des cartes servant à définir les déplacements du bras robotique. En se tournant vers le ciel, la caméra a pu étudier les nuages constitués de cristaux de glace d'eau mais aussi la poussière en suspension dans l'atmosphère martienne (en jaugeant l'atténuation de la lumière du soleil par les particules de poussière).
Analyseur de gaz (T. E. G. A. )
L'analyseur de gaz (en anglais Thermal and Evolved Gas Analyzer) [14]. Instrument réalisé par l'université d'Arizona et par l'université du Texas.
Cet instrument original, qui combine des petits fours et un spectromètre de masse, a eu pour tâche d'analyser les échantillons de sol et de glace collectés par le bras robotique. Le TEGA de Phœnix est comparable à l'appareil du même nom embarqué sur la sonde Mars Polar Lander, et s'est livré aux premières recherches de composés organiques depuis les sondes
Le bras robotique a commencé par creuser une petite tranchée de quelques centimètres dans le sol. Un échantillon fut prélevé, photographié par la caméra du bras robotique puis déposé dans l'un des 8 fours du TEGA (leur taille est approximativement celle d'une petite cartouche d'encre). Une diode LED a servi à confirmer qu'un échantillon de sol a bien été délivré. L'échantillon fut alors porté à particulièrement haute température (environ 1000 °C), et ce de manière progressive. Quoiqu'alimenté seulement par des panneaux solaires, le TEGA a pu atteindre une telle température, car la masse de l'échantillon à chauffer étai particulièrement faible (100 milligrammes à peu près).
Lors du chauffage progressif, le sol a libéré de l'eau et du CO2, mais aussi diverses substances volatiles emprisonnées dans différents minéraux. L'identification des substances volatiles s'est effectué grâce à un spectromètre de masse particulièrement sensible, qui a pu mesuré exactement la masse (et par conséquent la nature), mais aussi la concentration des substances libérées au cours du chauffage. Une fois utilisé, un four ne pouvait plus servir. Le TEGA devait aussi jouer le rôle d'un calorimètre, dans la mesure où l'énergie à apporter pour porter les fours à une certaine température était contrôlée. En tout et pour tout, le TEGA devait analyser 8 échantillons de sol.
Caméra de descente (Mar. D. I. )
La caméra de descente (en anglais Mars Descent Imager). [15] Instrument réalisé par Malin Space Science Systems.
L'instrument MARDI est une caméra dont l'objectif était d'acquérir des images grand angle et en couleurs du site d'atterrissage lors de la descente vers la surface martienne, légèrement comme la caméra DIMES des astromobiles Spirit et Opportunity. MARDI devait entrer en fonctionnement juste après l'éjection du bouclier thermique, et prendre 20 images de la région localisée en dessous d'elle. Grâce à ces données, les scientifiques devaient être à même de caractériser géologiquement le site d'atterrissage et de construire un modèle numérique en 3D de l'endroit où Phœnix allait travailler. Malheureusement, une erreur ce programmation devait forcer les ingénieurs de la NASA a déprogrammer la caméra. Aucun cliché ne fut par conséquent prit lors de la descente.
Analyseur microscopique et électrochimique (M. E. C. A. )
L'analyseur microscopique et électrochimique (en anglais Microscopy, Electrochemistry, and Conductivity Analyzer) est un Instrument réalisé par le Jet Propulsion Laboratory, l'Université de Neuchâtel et l'Université de l'Arizona[16].
L'expérience MECA est un véritable petit laboratoire conçu pour analyser de nombreuses propriétés du sol martien. Elle s'organise autour de trois instruments :
- Un petit laboratoire humide, qui devait mesurer de nombreuses propriétés du sol, comme le pH, le potentiel d'oxydo-réduction, la salinité (magnésium, sodium, chlore, brome et sulfates), l'acidité ou l'alcalinité, ou encore les concentrations en oxygène et dioxyde de carbone.
Le laboratoire comprenait quatre petits béchers où avaient lieu les mesures. Après qu'un échantillon de sol était collecté par le bras robotique et déversé dans le bécher, ce dernier était mélangé à une solution, puis agité, et ce durant une journée à peu près. Des électrodes mesuraient la présence et la concentration de différents solutés. L'expérience se terminait avec l'ajout de deux pastilles réactives. La première pastille libérait de l'acide pour détecter d'éventuels carbonates et mesurer des espèces seulement solubles en milieu acide. La seconde pastille devait permettre de détecter des sulfates et des molécules oxydantes.
- Le second instrument était un ensemble de deux microscopes, qui devaient étudier les particules de sol à différents grossissements.
- Le premier microscope, un microscope optique comme il en existe dans l'ensemble des salles de TP, possédait une résolution de 4 microns par pixel. Des diodes électroluminescentes colorées (rouge, verte, bleue et ultraviolet) éclairaient les échantillons, ce qui permettait de faire ressortir les différents constituants du sol (particules minérales, glace d'eau, etc. ).
- Le second microscope était plus impressionnant que le premier : c'était un microscope à force atomique. Contrairement aux microscopes optiques ou électroniques, un microscope à force atomique n'étudie pas la matière en la voyant, mais plutôt en la touchant. Le principe d'un microscope à force atomique est assez simple : l'appareil utilise un capteur extrêmement petit (que les spécialistes nomment des pointes) pour sentir la surface d'un échantillon et en construire une représentation en 3D particulièrement précise. Baptisé FAMARS, ce microscope à force atomique devait permettre d'étudier le sol à l'échelle nanométrique, et devait observer des particules aussi petites que 10 nm. L'instrument comportait huit petites pointes attachées à des leviers particulièrement flexibles. Si un capteur était contaminé ou endommagé durant la mesure, un autre pouvait prendre sa place. Quand les huit capteurs étaient utilisés, le microscope à force atomique ne pouvait plus fonctionner. FAMARS fut le premier microscope à force atomique jamais envoyé sur Mars.
Avant d'être examinés par les microscopes optiques ainsi qu'à force atomique, les échantillons collectés par le bras robotique étaient déposés sur un porte-échantillon d'un genre spécifique : une roue mobile portant 69 substrats différents, depuis des aimants jusqu'à des plaques collantes, des plaquettes pour déterminer la dureté, des fragments de textiles et de métaux, etc. Ce dispositif permettait de générer différentes interactions entre les particules de sol et les substrats.
- Le dernier instrument du package MECA était une sonde permettant d'étudier la conductivité thermique et électrique du sol. Celle-ci était fixée sur la pelle du bras robotique et était enfoncée dans la tranchée creusée par le bras robotique.
L'expérimentation MECA était jusque là montée sur la sonde Mars Surveyor 2001. L'un des objectifs de cette mission était de préparer la venue de l'homme sur Mars, en déterminant les dangers potentiels de la surface martienne. Le package MECA devait surtout servir à caractériser la poussière, identifier les interactions indésirables avec les hommes et les dispositifs électroniques (adhésion, abrasion, corrosion, toxicité, obstruction, radiations, courts-circuits) et permettre le design des dispositifs d'habitations et des combinaisons spatiales pour les sorties extravéhiculaires (EVA). Il n'est pas certain que ces objectifs, décrits en détail ici, soient toujours d'actualité, et ce malgré le projet d'exploration spatiale du président George Bush visant un retour sur la Lune et une exploration humaine de la planète rouge. L'unique objectif lié aux missions habitées semble être l'étude de la teneur en eau du sol par spectrométrie à neutrons, qui pourrait alors être extraite et utilisée par l'équipage.
Station météorologique (M. E. T. )
La station météorologique (en anglais Meteorological Station) [17]. Instrument réalisé par l'Agence spatiale canadienne.
La totalité météorologique, apporté par le Canada, comprenait des capteurs de pression et de température, ainsi qu'un Lidar, un instrument comparable à un radar mais utilisant des brèves émissions de lumière laser en lieu et place d'impulsions d'ondes radio. Ce fut la première fois qu'une station météorologique renvoya des données depuis la région polaire nord de Mars.
La majorité des capteurs de température étaient montés sur un mât de 1, 2 mètre de hauteur. Les capteurs de pression étaient quant à eux logés au sein de l'atterrisseur. Le dispositif météorologique recueilla aussi les données provenant des thermocouples rivetés sur le bras robotique.
Le Lidar se trouvait au-dessus du corps de l'atterrisseur et servi à étudier les aérosols atmosphériques mais aussi les nuages de glace. Son fonctionnement est légèrement comparable à celui du radar. Il émet des impulsions d'énergie et détecte leur écho quand elles sont réfléchies par différents obstacles. Contrairement au radar, le Lidar n'émet pas d'ondes radio, mais des impulsions de lumière laser (2 500 impulsions de lumière par seconde dans le proche infrarouge). Une diode laser envoya des flashs lumineux dont le retour futchronométré de façon à localiser ainsi qu'à caractériser les nuages de glace et la poussière dans l'atmosphère martienne sur une courte distance (2 à 3 kilomètres). L'objectif principal de cet instrument était de déterminer la quantité de poussière en suspension dans l'atmosphère au-dessus du site d'atterrissage.
Notes et références
- ↑ a b (fr) La Nasa confirme la présence d'eau sur Mars sur http ://phœnix. lpl. arizona. edu, 31 juillet 2008. Consulté le 31 juillet 2008
- ↑ (fr) http ://www. futura-sciences. com/fr/news/t/astronautique/d/sur-mars-phœnix-est-a-lagonie-au-seuil-de-lhiver-arctique_16985/ Sur Mars, Phœnix est à l'agonie au seuil de l'hiver arctique, Futura Sciences, 11 octobre 2008
- ↑ (en) Fin des communications avec Phœnix sur http ://www. nasa. gov, 10 novembre 2008. Consulté le 11 novembre 2008
- ↑ Jérôme Fenoglio, «La NASA compte sur Phœnix pour recueillir de l'eau martienne», dans Le Monde du 07/08/2007, [lire en ligne]
- ↑ The University of Arizona : NASA Selects UA'Phœnix'Mission to Mars, 4. August 2003
- ↑ «Une semaine dans l'air & le cosmos», dans Air et cosmos, no 2121, 18 avril 2008, p. 7 (ISSN 1240-3113)
- ↑ AFP Agence France-Presse : La sonde américaine Phœnix a atterri sans encombre sur Mars, le 26 mai 2008.
- ↑ La sonde Phœnix surveillée par ses consœurs pour son atterrissage
- ↑ Disappearing Ice In Color, le 20 juin 2008
- ↑ The University of Arizona : Robotic Arm (RA)
- ↑ Jérôme Fenoglio, «La NASA compte sur Phœnix pour recueillir de l'eau martienne», dans Le Monde du 07/08/2007, [lire en ligne]
- ↑ The University of Arizona : Robotic Arm Camera (RAC)
- ↑ The University of Arizona : Stereo Imager (SSI)
- ↑ The University of Arizona : Thermal Evolved Gas Analyzer (TEGA)
- ↑ The University of Arizona : Mars Descent Imager (MARDI)
- ↑ The University of Arizona : Mars Environmental Compatibility Assessment (MECA)
- ↑ The University of Arizona : Meteorology Suite (MET)
- (fr) Description des premiers résultats la mission Phœnix sur le site de Planète Mars, par Gilles Dawidowicz
- (en) Site officiel du programme Phœnix
- (en) La mission Phœnix sur le site de la NASA (premières photos)
- (fr) Description de la mission Phœnix sur le site de Philippe Labrot
- (fr) Dossier, images et vidéo de Phœnix sur le site Orbit-Mars
- (fr) Phœnix, premier explorateur polaire sur Mars épisode 1 et épisode 2, avec Jean-François Forget (Ciel & Espace radio)
- (fr) Vidéo de la conférence à la cité des sciences : Atterrissage en direct sur Mars.
Recherche sur Amazone (livres) : |
Voir la liste des contributeurs.
La version présentée ici à été extraite depuis cette source le 19/04/2009.
Ce texte est disponible sous les termes de la licence de documentation libre GNU (GFDL).
La liste des définitions proposées en tête de page est une sélection parmi les résultats obtenus à l'aide de la commande "define:" de Google.
Cette page fait partie du projet Wikibis.